Признак делимости на 7

Определение. Трёхзначные грани числа — это числа, которые получены разбиением исходного числа на трёхзначные числа. Например, разбиение числа 1234567890 на трёхзначные грани выглядит так: 1|234|567|890 (разбиение числа начинается с его конца). Числа 1, 234, 567, 890 являются трёхзначными гранями числа 1234567890.
Признак делимости на 7: число делится на 7, если знакочередующаяся сумма его трёхзначных граней делится на 7.

Термин «знакочередующаяся» означает, что первое слагаемое суммы берётся со знаком «плюс», второе — со знаком «минус», третье — опять со знаком «плюс» и т.д. То есть знаки перед слагаемыми чередуются.

Пример. Проверить, делится ли на 7 число а) 626647 б) 23013 в) 99148

Решение: а) 626647. Разбиение этого числа на трёхзначные грани выглядит так: 626|647. Знакочередующаяся сумма трёхзначных граней этого числа равна 626 − 647 = −21. Так как −21 делится на 7, то и число 626647 делится на 7. Ответ: делится.

б) 23013. Разбиваем число на трёхзначные грани: 23|013. Знакочередующаяся сумма трёхзначных граней этого числа есть 23 − 13 = 10. Число 10 на 7 не делится, поэтому число 23013 не делится на 7. Ответ: не делится.

в) 99148. Разбиваем число на трёхзначные грани: 99|148. Знакочередующаяся сумма трёхзначных граней этого числа равна 99 − 148 = −49. Число −49 делится на 7, поэтому и число 99148 делится на 7. Ответ: делится.

Доказательство этого признака смотрите в этой статье.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

один × пять =