Прежде, чем сформулировать признак делимости на 13, дадим такое простое определение:
Термин «знакочередующаяся» означает, что первое слагаемое суммы берётся со знаком «плюс», второе — со знаком «минус», третье — опять со знаком «плюс» и т.д. То есть знаки перед слагаемыми чередуются.
Пример: проверить, делятся ли на 13 числа а) 433407 б) 66199 в) 1231321.
Решение: а) 433407. Разбиваем это число на трёхзначные грани: 433|407. Знакочередующаяся сумма трёхзначных граней равна 433 − 407 = 26 — делится на 13. Следовательно, число 433407 делится на 13. Ответ: делится.
б) 66199. Разбиваем это число на трёхзначные грани: 66|199. Знакочередующаяся сумма трёхзначных граней равна 66 − 199 = −133. Число −133 на 13 не делится. Действительно, −133 = −130 − 3 = −13 ⋅ 10 − 3. Поэтому 66199 не делится на 13. Ответ: не делится.
в) 1231321. Разбиваем это число на трёхзначные грани: 1|231|321. Их знакочередующаяся сумма равна 1 − 231 + 321 = 91. Число 91 делится на 13: 91 = 7 ⋅ 13. Поэтому число 1231321 делится на 13. Ответ: делится.
Доказательство признака делимости на 13 основывается на представлении чисел в десятичной системе счисления. Подробное доказательство признаков делимости смотрите в большой статье о признаках делимости.
2 ответа к “Признак делимости на 13”
А если число трёхзначное?
Просто разделить его в столбик на 13…