Локальный экстремум
Определение 1. Пусть существует число такое, что функция определена в -окрестности точки то есть на множестве и пусть для всех выполняется неравенство
Тогда говорят, что функция имеет в точке локальный минимум.
Аналогично, если существует число такое, что для всех выполняется неравенство
то говорят, что функция имеет в точке локальный максимум.
Определение 2. Если точка является точкой локального минимума или локального максимума функции то говорят, что — точка локального экстремума функции
Теорема Ферма
Теорема (Ферма). Если функция имеет локальный экстремум в точке и дифференцируема в этой точке, то
Этой теоремой пользуются для нахождения точек локального экстремума.